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Abstract

The current financial crisis is a remarkable example of underestima-
tion of systematic risk. To that end, we investigate risk characteristics
of synthetic CDOs in detail. This requires a fully dynamic approach
including the business cycle. We find significant dependence of tranche
default probability (PD) and tranche loss given default (LGD) on the
credit cycle state. Furthermore, we show the need of modeling LGD
as stochastic and PD dependent process.
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1 Introduction

The current financial crisis is a result of several factors, one of the most
important being ill-rated structured finance products. One of the reasons
for the agencies’ failure seems to be underestimation of systematic risk.
Among many factors which may be influential in a rating process two things
appear most important in our view: disregard of the increased systematic
risk sensitivity of CDOs in comparison with bonds as well as through-the-
cycle modeling.

In this article, we shall address both issues. First, we develop a simple
and consistent extension of the Gaussian 1-factor model which allows for the
state of default-relevant systematic factors. Based on this we study a series
of risk characteristics of CDOs and show the model risks of disregarding the
evolution of the business cycle as well as LGD volatility.

In the discrete-time literature1, some models can already be found al-
lowing for systematic risks with persistence. One group of works is based on
the Gaussian 1-factor model assuming an autoregressive process for the sys-
tematic factor (Koopman, Lucas, and Klaassen, 2005; McNeil and Wendin,
2007; Lamb, Perraudin, and van Landschoot, 2008; Lamb and Perraudin,
2008). Another part of the literature models the systematic factor as a
Markov chain (Giampieri, Davis, and Crowder, 2005; Bruche and Gonzalez-
Aguado, 2008; Pederzoli and Torricelli, 2005). Of all these articles, only
Lamb, Perraudin, and van Landschoot (2008) consider structured finance
products or CDOs in particular.

Besides, there are several articles on CDO risk. Fender and Kiff (2005)
study CDO rating methodology and Fender, Tarashev, and Zhu (2008) ex-
amine the sensitivity of tranche rating to obligor rating changes or correla-
tion changes. The paper of Gibson (2004) is concerned with several aspects
of CDO risk, mostly related to spread sensitivity. These articles do not ex-
amine the underlying models formally and in-depth. Another part of the
literature is concerned with capital allocation rules for portfolios contain-
ing CDO tranches (Gordy and Jones, 2003; Pykhtin and Dev, 2002, 2003).
These contributions are largely based on LHP approximations which is not
our focus. Furthermore, this article is limited to risk assessment or rating
of CDOs based on real world default risk measures.

1Autocorrelation in continuous time is intrinsically given with diffusions. We will not
pursue these models here.
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To summarize, the major contribution of this article is an in-depth anal-
ysis of the risk particularities of CDO tranches. We show that there is always
a strong dependence of both tranche PD (probability of default) as well as
LGD (loss given default) on the systematic factor. This is a very important
fact but hardly ever studied explicitly in the literature. We show the rele-
vance of dynamic modeling when a security is highly exposed to systematic
risks. To that end, we analyze the evolution of tranche risk measures in
the course of time. The latter implies dependence on the state of the credit
cycle and we show that disregarding this may lead to seriously biased risk
estimates. We introduce a dynamic and factor-conditional representation
of tranche PD and LGD which is useful at risk assessment as well as for
portfolio integration of securitisations. We are not aware of any prior works
in this respect. In addition, because of their potential to induce systematic
effects, we investigate and compare different dynamic LGD volatility models
and their contributions to tranche risk. We find again that disregard of this
may lead to large deviations. Finally, we show the extreme impact of exter-
nal shocks of average collateral pool PD and LGD similar to those currently
observed in the U.S.

The article is organized as follows. In the next section we introduce our
dynamic model including several LGD volatility extensions. We show in
detail necessary calculations for default threshold calibration. Finally, we
briefly introduce some important tranche risk measures. In Section 3 we
perform an extensive portfolio study with the results as described above.

2 General Factor Model Setup

In this section we describe the model setup upon which our analyses are
based. We consider a Merton-style Gaussian one-factor model as suggested
in the Basel II specification. F represents a common systematic factor which
affects all obligors’ default probabilities.

2.1 Single Period Gaussian 1-Factor Model

In a portfolio of i = 1, . . . , n obligors default of obligor i is modeled as a
threshold event:

Di = 1{Ri<ci} (1)

where Ri is a random variable comprising two terms:

Ri =
√

ρF +
√

1− ρUi (2)

a common (systematic) factor F and an idiosyncratic factor Ui. Both are
iid standard normal and so is Ri. Di is a default indicator which jumps to
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unity if Ri falls below ci.
Now let LGDi denote loss given default of obligor i as a fraction of his

notional Ni. Then loss is given by

L =
∑

i

1{Di=1} · EADi · LGDi (3)

To simplify the dependence structure as well as the calculation of L we
make the common assumption of conditional independence with respect to
F . This renders the joint probability distribution as the product of the
margins λi(F ) which are given by

λi(F ) = Φ
(

Φ−1(λi)−√ρF√
1− ρ

)
(4)

2.2 Multiple Periods Gaussian 1-Factor Model

So far the described approach is standard and frequently applied in practice.
Our next step is to extend the model to multiple periods. This is most easily
done assuming stochastic processes for F and Ui, i.e., Ft and Uit. In the
absence of any other hypothesis we simply assume that Uit is iid standard
normal.

However, the systematic term admits more structure. Empirical research
shows that default rates have a cyclical behavior and persistence phases.
Hence, we specify Ft in one of the most simple ways as first-order autore-
gressive process AR(1):

Ft = α1Ft−1 + σWt (5)

where α1 and σ are parameters and F0 is the initial value of the process.
Furthermore, we set σ =

√
1− α2

1 so that Ft → N (0, 1) as t grows. The two
first moments of the unconditional process Ft are E[Ft] = 0 and V[Ft] = 1
and given F0 we have E[Ft] = αt

1F0 and V[Ft] = σ2
∑t−1

j=0 α2j
1 = 1− α2t

1

Substituting this we obtain for Rit

Rit =
√

ραt
1F0 +

√
ρσ

t−1∑

j=0

αj
1Wt−j +

√
1− ρUit (6)

where i ∈ Nt, i.e., the index set of survivors in t− 1, Nt = {i : Dit′ = 0, t′ <
t}.

In a multi-period setting we evaluate our threshold model once per pe-
riod among the survivors. The default indicators are defined accordingly as
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follows

Dit = 1{Rit<cit} (7)

and portfolio loss as of time t is defined as

Lt =
∑

t′≤t

∑

i

Dit′ · EADi · LGDit′ (8)

Unconditional Multi-Period Rit Distribution Evaluation of a T pe-
riod model by means of repeated computation of a single-period model re-
quires to adapt the default thresholds cit to the hazard rate term structure
(λit). Thus, for any t we set

P
[
Rit < cit | Rit′ > cit′ , t

′ < t
]

= λit (9)

and solve for cit. The marginal and joint distributions of Rit and Rit′ , t
′ < t,

are Gaussian. If hazard rates are not conditional upon the state of the
credit cycle (i.e., if they are “through-the-cycle”), calibration requires taking
expectation with respect to the common factor F . The resulting multivariate
normal of (Ri1, . . . , Rit) has expectation

(E[Ri1], . . . ,E[Rit]) = (0, . . . , 0) (10)

and covariances

Cov (Rit, Rit′) = E[Rit, Rit′ ]− E[Rit]E[Rit′ ]

= ρα
|t−t′|
1 + (1− ρ)1{t=t′}

(11)

The above hazard rate based on a multidimensional Gaussian is easily
simulated. As a result, we may derive cit consecutively (given cit′ , t

′ < t) in
a bootstrap fashion2.

Conditional Multi-Period Rit Distribution In the following we shortly
anaylze the corresponding conditional distributions, i.e., given F0 we have

(Rit, Rjt′) ∼ N (µ,Σ) (12)

with mean

µ =
(√

ραt
1f0,

√
ραt′

1 f0

)
(13)

2Inversion is done easily via a one-dimensional root search algorithm.
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and covariances

Cov
(
Rit, Rjt′

)
= E

[
Rit, Rjt′

]− E[Rit]E
[
Rjt′

]

= ρ
(
α
|t−t′|
1 − α

|t+t′|
1

)
+ (1− ρ)1{t=t′,i=j}

(14)

which implies correlation

ρRit,Rjt′ =
Cov

(
Rit, Rjt′

)
√
V[Rit]V

[
Rjt′

]

= ρ
α
|t−t′|
1

(
1− α2t′

1

)
√(

1− ρα2t
1

) (
1− ρα2t′

1

)

(15)

The last correlation term effectively says that keeping t′ constant and in-
creasing t implies decreasing correlation. In a one period model any two
obligors have correlation ρ while in a multi-period model contemporaneous
correlation is

ρRit,Rjt = ρ
1− α2t

1

1− ρα2t
1

(16)

Letting t → ∞, this correlation approaches ρ. Intertemporal correlation
between i and j tends to zero as |t − t′| increases. This is certainly one
reason why single-period and multiple-periods models based on the same
asset correlation are inconsistent. For any two obligors the correlation is
ρ in a single-period model but not so (i.e., lower) in a multiple-periods
framework.

This problem is still present even if the variance of Ft is normalized to
unity in each period, i.e., by setting σ = 1 in t = 1 and σ =

√
1− α2

1 in
t > 1. More precisely, we have

(Rit, Rjt′) ∼ N (µ,Σ) (17)

with mean

µ =
(√

ραt
1f0,

√
ραt′

1 f0

)
(18)

but covariances

Cov
(
Rit, Rjt′

)
= E

[
Rit, Rjt′

]− E[Rit]E
[
Rjt′

]

= ρα
|t−t′|
1 + (1− ρ)1{t=t′,i=j}

(19)

From the last line it is again evident that intertemporal correlation is always
lower than contemporaneous correlation.
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Finally, note that normalization implies another model since even if the
thresholds are calibrated to match the term structures of i and j (i.e., the
margins), we have still Gaussian copulas with different correlations. In other
words, both models have the same margins but different dependence struc-
tures. To see the great difference of both models consider the case where
α1 = 1. The unnormalized model implies zero correlation of (Rit, Rjt′) for
any t and t′. However, the normalized model leads to correlation ρ, again
for any t and t′. In the first case, all obligors have the same F0 each period
so that volatility is only due to their iid terms Uit and Ujt′ . As a result,
they are uncorrelated. In the second case, there is only one innovation,
namely in t = 1. For t > 1 we have σ = 0 and no further innovations are
added. As a result, the same systematic innovation influences all obligors
in each period (and without attenuation since α1 = 1) and hence, ρ is both
contemporaneous and intertemporal correlation.

Deriving (cumulative) portfolio loss Lt at time t again relies on con-
ditional independence on Ft. Let R̃it = Rit | Rit′ > cit′ , t

′ < t. Then
P
[
R̃it < cit

]
= λit but the distribution of R̃it is not immediate. However,

R̃it | Ft ∼ N (
√

ρFt, 1− ρ) and we obtain

λit (Ft) = Φ
(

cit −√ρFt√
1− ρ

)
(20)

2.3 Stochastic Loss Given Default (LGD)

Applying a static (single-period) model is one questionable approximation
frequently made, assuming fixed, deterministic LGDs is another. Hence, our
next step is to extend the model for stochastic LGDs.

Common Factor A first approach is based on Duellmann and Trapp
(2004) who assume the following latent process for Yit = ln

(
1−LGDit
LGDit

)

Yit = µ + σ̃
√

ω1Ft + σ̃
√

1− ω1Eit (21)

where i ∈ Dt, the index set of defaulted names by the end of t, Dt = {i ∈
Nt : Dit = 1} and Eit is a name-specific standard normally distributed
innovation.

µ and σ̃ are linear transformation coefficients and ω1 controls the in-
fluence of Ft. The first two moments are E[Yit] = µ and V[Yit] = σ̃ with-
out knowledge of F0 and E[Yit | F0] = µ + σ̃

√
ω1α

tF0 and V[Yit | F0] =
σ̃2

(
1− ω1α

2t
)

given F0. The latter conditional moments tend to the uncon-
ditional ones as t rises. Based on this, LGD arises after logistic transforma-
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tion

LGDit =
1

1 + exp(Yit)
(22)

i.e., as Yit → −∞, LGDit → 1.
Obviously, this specification assumes that LGD is based on the same

latent process as PD.

Separate Factors There is no definite reason to assume a common factor
for both PD and LGD. Hence, we also consider a model where the LGD
process is based on a separate factor process.

Ft = α1Ft−1 + σ1Wt

Gt = α2Gt−1 + σ2Vt
(23)

where (Wt, Vt) ∼ N (µ,Σ) and µ = (0, 0) and Σ is a 2×2 covariance matrix
with unit diagonal and off-diagonal ω2. The latent factor process Gt drives
the same process as in the common factor model

Yit = µ + σ̃
√

ω1Gt + σ̃
√

1− ω1Eit (24)

Furthermore, we set again σ1,2 =
√

1− α2
1,2. In this setup, both latent

processes are related via the correlation of the innovations. More precisely,
(Ft, Gt) is multivariate normal with

E[Ft, Gt] =
(
αt

1F0, α
t
2G0

)

V[Ft, Gt] =


σ2

1

t−1∑

j=0

α2j
1 , σ2

2

t−1∑

j=0

α2j
2


 =

(
1− αt

1, 1− αt
2

)

Cov [Ft, Gt] = σ1σ2ω2

t−1∑

j=0

(α1α2)
j

(25)

For ω2 = 1 and α1 = α2 both processes are prefectly correlated.

2.4 Synthetic CDOs

In the last subsections we developed a model for asset pool loss. This paper
is concerned with derivatives on an asset pool, specifically synthetic CDOs.
In the sequel, we introduce the relevant notation.

Let 0 ≤ Atr < Btr ≤ 1, denote a percentage interval of the asset pool
notional N =

∑
i Ni, called “tranche”. The CDO is “hit”, i.e., incurs losses,

8



if total cumulative asset pool loss exceeds the lower attachment point Atr

of the tranche, i.e., Lt > Atr. A complete default of the CDO occurs if
Lt ≥ Btr. Formally, CDO tranche loss is given by

Ltr
t = min (Lt, Btr)−min (Lt, Atr) (26)

The loss given default of a CDO tranche is given by

LGDtr
t = Ltr

t | Lt > Atr (27)

Several other tranche related risk measures shall be relevant below.

Tranche Hitting Probability

ptr
t = P[Lt > Atr] (28)

Tranche Hazard Rate

λt =
P[Lt > Atr, Lt−1 ≤ Atr]

P[Lt−1 ≤ Atr]
(29)

This is actually a probability due to time discretization.

Expected Tranche Loss Given Survival Above we argued that LGD
does also depend on the PD factor process. In order to examine this depen-
dence in a dynamic context we consider

E
[
Ltr

t | Ltr
t−1 = 0

]
(30)

i.e., expected loss in period t given survival until t − 1. Conditioning on
both non-default as of t− 1 and Ft yields another important measure

E
[
Ltr

t | Ltr
t−1 = 0, Ft = ft

]
(31)

This expression tells us the mean loss a tranche which has not been hit yet
will suffer given the economy is in state ft then.

Expected Tranche LGD given Survival

E
[
Ltr

t | Ltr
t−1 = 0, Ltr

t > 0
]

(32)

Marginal VaR (MVaR) Finally, we shall examine MVaR of CDO tranches.
Esentially, this is the VaR add-on when a specific tranche is included in a
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portfolio. This figure is usually difficult to calculate and it is portfolio depen-
dent. However, assuming an infinitely fine-grained bank/investor portfolio
(Pykhtin and Dev, 2002) admits a simple solution as VaR contributions are
portfolio-invariant then. Specifically,

MVaRi(q) = E
[
Li | F−1

Ft
(q)

]
(33)

where F−1
Ft

denotes the inverse of the cdf of Ft.

3 Portfolio Study

In this section we study the behavior of tranche PD and tranche LGD of a
CDO described in Bluhm and Overbeck (2007). The asset pool comprises
n = 100 names from several rating classes and PDs ranging from 0.00002
to 0.3235 in the first year (see Table 1). Maturity is T = 5 years. Portfolio

Class # t = 1 t = 2 t = 3 t = 4 t = 5
AAA 5 0.0000 0.0000 0.0004 0.0003 0.0005

AA 12 0.0001 0.0002 0.0005 0.0008 0.0010
A 22 0.0004 0.0009 0.0013 0.0017 0.0023

BBB 32 0.0029 0.0057 0.0063 0.0090 0.0090
BB 17 0.0128 0.0271 0.0350 0.0344 0.0318

B 8 0.0624 0.0863 0.0845 0.0752 0.0607
CCC 4 0.3235 0.1478 0.1095 0.0972 0.1260

Table 1: Asset pool described in Bluhm and Overbeck (2007): rating class,
number of names, hazard rates for t = 1, . . . , 5.

exposures are homogeneous. We consider two mezzanine tranches in more
detail: Tr1 : (A1, B1) = (0.05, 0.08) and Tr2 : (A2, B2) = (0.08, 0.11).

We examine six cases in more detail (see Table 2). In the first case LGD
is non-stochastic. Case 2 and case 3 are benchmarks for case 1 with fixed
LGD. Here, F0 is assumed standard normal. In addition, case 3 has no
autocorrelation. Case 4 to 6 relate to different LGD models. In case four,
LGD is stochastic but depends on the same factor Ft as the PD process.
Case five is again with stochastic LGD but now we have two separate but
correlated factor processes. Finally, in case 6, we investigate whether LGD
volatility and time dependence is by itself sufficient to explain higher tranche
default risks. This is accomplished by setting the covariance between Wt and
Vt to zero, i.e., ω2 = 0. In addition, case 7 is to show the effect of LGD
stress. To that end, µ is set so that E[LGD] = 0.6 instead of 0.5.

3.1 Sensitivity of Tranche PD

One of the most important differences between subordinated defaultable
products and regular ones is the dependence on systematic risk. Systematic
influence is primarily driven via the default probabilities in the asset pool
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Parameter
Case F0 ρ α1 α2 µ σ̃ ω1 ω2

1 F0 ∈ {−1, 0, +1} 0.12 0.80 — — — — —
2 F0 ∼ N (0, 1) 0.12 0.80 — — — — —
3 F0 ∼ N (0, 1) 0.12 0 — — — — —
4 F0 ∈ {−1, 0, +1} 0.12 0.80 — 0 0.35 0.13 —
5 F0 ∈ {−1, 0, +1} 0.12 0.80 0.80 0 0.35 0.13 0.70
6 F0 ∈ {−1, 0, +1} 0.12 0.80 0.80 0 0.35 0.13 0
7 F0 ∈ {−1, 0, +1} 0.12 0.80 — −0.405 0.35 0.13 —

Table 2: Parameter Configurations.

which are assumed to depend on Ft. But Ft in turn depends on F0 and the
strength of this relation is controlled by α1. Besides, systematic influence
also unfolds through asset pool LGD. Higher average LGDs in the asset pool
accelerate the reduction of subordination. In the following subsections we
study these effects in detail.

3.1.1 Initial Factor Dependence

In order to show the relevance of the initial factor F0 we consider tranche
hitting probabilities in the course of time. We confine our analysis to cases
with fixed LGD (cases 1, 2, and 3) of the list of model configurations. Below,
we will turn to cases with stochastic LGD.

Table 3 shows the simulation results. F0 = ±1 represent moderate good
and bad factor levels (Φ(−1) = 0.158), respectively, and F0 = 0 is a mean
level. In Table ?? we see that hitting probabilities are strongly influenced
by F0. A low (bad) initial value of the economic factor implies high tranche
hitting risk and vice versa for a high initial value. The strength of this de-
pendence is remarkable: for tranche 1 and 2 cumulative hitting probabilites
in t = 5 are, respectively, 5 and more than 10 times as high for F0 = +1
in comparison with F0 = −1. This result, which carries over to other asset
pool configurations and tranches, underlines the fact that disregard of the
current state in the economic cycle may result in seriously misleading rating
estimates for the near future. Why? Increased systematic risk sensitivity
means that small movements of the systematic factor have large impact on
risk measures. As a result, looking through the cycle conceals the increased
variance of risk measures.

These arguments are strengthened considering case 2 and case 3, i.e.,
when F0 is random or when the whole process Ft is iid. The results (see
Table 3) show significant differences between case 1 on the one hand and case
2 and 3 on the other hand3. With a positive initial value F0 risk measures
are at very low levels but with a negative initial value hitting probabilities
soar. This is a good example for the importance of stress tests with products
having high systematic risk exposition.

3The only exception is case 1 with F0 = 0 which yields similar probabilities as case 3.
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Case 1
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0006 0.1807 0.4859
2 0.0000 0.0165 0.1309

F0 = 0
1 0.0000 0.0472 0.2473
2 0.0000 0.0020 0.0399

F0 = +1
1 0.0000 0.0078 0.0988
2 0.0000 0.0002 0.0100

Case 2,3
Tranche t = 1 t = 3 t = 5
Case 2

1 0.0011 0.0933 0.2851
2 0.0000 0.0113 0.0716

Case 3
1 0.0010 0.0559 0.2533
2 0.0000 0.0022 0.0213

Table 3: Tranche hitting probability.
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Figure 1: Factor sensitivity of tranche hazard rate for tranches Tr1 and Tr2 and a bond from rating class BBB.

3.1.2 Current Factor Dependence

Our previous analysis has shown the dependence of tranche hitting prob-
ability on the initial PD factor level. But how does tranche default risk
in period t depend on Ft? This question is important, for instance, when
a CDO has to be integrated in a bond portfolio. Similarly, knowing sen-
sitivity with respect to Ft is a necessary precondition to model CDO loss
distributions. Consider the following two “sensitivity diagrams” (Figure 1).
The curves represent factor specific tranche hazard rates, i.e., the hitting
probability in period t given no default until t− 1 and given Ft = ft.

We see that lower levels of Ft imply higher tranche hazard rates. For
t = 1 tranche hazard rates are identical to tranche hitting probabilities. In
the last section we could see how default rates go down from F1 = −1 to
F1 = +1. For t > 1 tranche hazard rates are hitting probabilities conditional
upon no hit until the last period. Similar to t = 1 we find rates increasing
from zero to unity as the current factor Ft decreases.

Furthermore, the curve shifts to the right for growing t, which is a com-

12



mon but not a necessary phenomenon4. Finally, comparing the right figure
with the other two, the difference between tranches and bonds becomes ob-
vious. Tranche hazard rates increase much faster with decreasing factor level
than conventional bonds.

3.1.3 Asset Pool LGD Dependence

As a figure based on cumulative loss, tranche PD also depends on asset pool
LGDs. As pointed to above, empirical studies provide evidence for bond
LGD volatility and default rate dependence. To that end, we shall include
the LGD extensions as presented in the last section in our analysis (case
4, 5, and 6 in Table 2). As a reminder, case 1 is fixed LGD while 4-6 are
stochastic LGD. Case 4 is with common factor dependence and 5-6 are with
a separate LGD factor process (Gt). Case 6 involves no correlation between
Wt and Vt.

Table 4 shows the results.

Case 1
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0006 0.1807 0.4859
2 0.0000 0.0165 0.1309

F0 = 0
1 0.0000 0.0472 0.2473
2 0.0000 0.0020 0.0399

F0 = +1
1 0.0000 0.0078 0.0988
2 0.0000 0.0002 0.0098

Case 4
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0035 0.2595 0.5587
2 0.0000 0.0395 0.1928

F0 = 0
1 0.0001 0.0765 0.3006
2 0.0000 0.0056 0.0649

F0 = +1
1 0.0000 0.0145 0.1258
2 0.0000 0.0004 0.0171

Case 5
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0026 0.2571 0.5569
2 0.0000 0.0360 0.1876

F0 = 0
1 0.0000 0.0726 0.2937
2 0.0000 0.0043 0.0607

F0 = +1
1 0.0000 0.0138 0.1203
2 0.0000 0.0005 0.0150

Case 6
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0018 0.2441 0.5550
2 0.0000 0.0283 0.1704

F0 = 0
1 0.0000 0.0633 0.2843
2 0.0000 0.0032 0.0496

F0 = +1
1 0.0000 0.0098 0.1072
2 0.0000 0.0002 0.0105

Table 4: Tranche hitting probabilities.

Hitting probabilities are lowest for case 1 (fixed LGD) and highest for
case 4 (common factor) for any level of F0. Despite our moderate parame-
terization5 this result clearly reveals the systematic impact of LGD volatility
and factor dependence. The relative differences between fixed and stochastic
LGD cases are significant. Case 5 and 6 lie between case 1 and case 4 which
is also a plausible result. Case 4 involves the same PD and LGD factor pro-
cess so that systematically high PDs imply high LGDs. This relationship is

4The intuitive reason for this phenomenon is shrinking subordination.
5σ̃ and ω1 are fixed at rather low levels.
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weakened in case 5 and completely absent in case 6. To summarize, modeling
asset pool LGD as a PD factor related process significantly changes tranche
risk. Moreover, an autocorrelated LGD process for its own is sufficient to
increase tranche risk. The latter do not need to be conditionally related,
yet, unconditionally. However, unconditional correlation, arising through
similar initial values, is a realistic assumption.

3.2 Sensitivity of Tranche LGD

Besides tranche PD the other part of the tranche distribution is tranche
LGD and this distribution is sensitive to systematic risk, too. We assume
dependence of tranche LGD on asset pool LGD at first sight. However,
as tranche LGD depends on cumulative asset pool loss we have also good
reason to check for PD factor dependence (i.e., F0 and Ft).

3.2.1 Initial Factor Dependence

In Table 5 mean tranche LGDs conditional upon F0 for case 1 is printed.

Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.2487 0.4780 0.6426
2 — 0.4293 0.5642

F0 = 0
1 0.1667 0.3982 0.5486
2 — 0.3822 0.4996

F0 = +1
1 — 0.3349 0.4694
2 — 0.2879 0.4372

Table 5: Expected tranche LGD (Case 1).

We observe clear dependencies: higher levels of F0 implicate lower av-
erage tranche LGDs. An explanation for this result is again the fact that
Ltr

t is a figure that is based on cumulative pool loss which in turn is highly
dependent on F0 as we know from above.

3.2.2 Current Factor Dependence

Dependence on F0 suggests dependence on Ft and the results provide evi-
dence for this. Consider Figure 2. In accordance to tranche PD we obtain
sensitivity diagrams similar in shape. Tranche LGD depends on Ft: average
tranche LGDs grow as Ft decreases. Note that the curves do not approach
zero at the right-hand side which depends on tranche width and asset pool
LGD mean and volatility6.

6Expected LGD conditional upon Ft is useful when integrating a CDO in a superport-
folio (e.g., the total bank portfolio).

14



−6 −4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr: = 0.05 − 0.08, ρ = 0.12, α1 = 0.8, α2 = 0, F0 = − 1, G0 = − 1, µ = 0, σ~ = 0, ω1 = 0, ω2 = 0

Factor

E
xp

ec
te

d 
T

ra
nc

he
 L

G
D

 G
iv

en
 S

ur
vi

va
l

t=1
t=2
t=3
t=4
t=5

−6 −4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr: = 0.08 − 0.11, ρ = 0.12, α1 = 0.8, α2 = 0, F0 = − 1, G0 = − 1, µ = 0, σ~ = 0, ω1 = 0, ω2 = 0

Factor
E

xp
ec

te
d 

T
ra

nc
he

 L
G

D
 G

iv
en

 S
ur

vi
va

l

t=1
t=2
t=3
t=4
t=5

Figure 2: Factor sensitivity of mean tranche LGD (conditional upon survival)
for tranches Tr1 and Tr2 (F0 = −1).

3.2.3 Asset Pool LGD Dependence

Finally, similar to hitting probability, tranche LGD may also depend on
asset pool LGD. Comparing our four different LGD models (case 1, 4, 5,
and 6) we find no clear relationship (see Table 6).

Obviously, our LGD models imply lower tranche LGDs at maturity for
tranche 1 and 2. We added an additional tranche (A,B) = (0.11, 0.17) in
order to show that higher tranches may be affected distinctly. For example,
for this third tranche we observe that expected tranche LGD is higher in
case 4 than in case 1 while it is lower for tranche 1 and 2.

3.3 Asset Pool LGD Shock

As a conclusion of our simulation study, we show the effects of an external
(i.e., not model-implied) shock of asset pool LGDs. Such kind of shock could
be observed only recently within the context of the house price crash in the
U.S. For illustration assume that average LGD increases from 0.5 to 0.6.
Table 7 shows the consequences in terms tranche PD and LGD.

The LGD stress implies soaring hitting probabilities, in some cases even
three-times as high. Although not very surprising, this result underlines
the amplified sensitivity of cumulative random variables with systematic
dependence.

4 Conclusion

The recent financial turmoil has clearly shown that many market players
had been completely ignorant of their risk exposition, largely because struc-
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Case 1
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.2459 0.4813 0.6451
2 — 0.4079 0.5618
3 — 0.1851 0.2922

F0 = 0
1 — 0.3978 0.5458
2 — 0.3399 0.4957
3 — 0.1667 0.2551

F0 = +1
1 — 0.3433 0.4749
2 — 0.2619 0.4572
3 — 0.2381

Case 4
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.1828 0.4676 0.6379
2 0.1648 0.4122 0.5613
3 — 0.2055 0.3193

F0 = 0
1 0.1721 0.3604 0.5221
2 — 0.3288 0.4796
3 — 0.1648 0.2777

F0 = +1
1 — 0.2876 0.4389
2 — 0.2997 0.4307
3 — 0.0491 0.2439

Case 5
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.1738 0.4533 0.6312
2 — 0.4001 0.5539
3 — 0.2026 0.3070

F0 = 0
1 0.1149 0.3494 0.5174
2 — 0.3441 0.4689
3 — 0.1343 0.2528

F0 = +1
1 — 0.2830 0.4260
2 — 0.2989 0.4131
3 — 0.1606 0.2314

Case 6
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.1607 0.4294 0.6112
2 — 0.3724 0.5183
3 — 0.1896 0.2844

F0 = 0
1 0.1008 0.3211 0.4880
2 — 0.3125 0.4346
3 — 0.1666 0.2406

F0 = +1
1 — 0.2512 0.3921
2 — 0.1874 0.3635
3 — — 0.1715

Table 6: Expected Tranche Loss.

Case 1 (without shock)
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0006 0.1807 0.4859
2 0.0000 0.0165 0.1309

F0 = 0
1 0.0000 0.0472 0.2473
2 0.0000 0.0020 0.0399

F0 = +1
1 0.0000 0.0078 0.0988
2 0.0000 0.0002 0.0100

Case 1 (with shock)
Tranche t = 1 t = 3 t = 5
F0 = −1

1 0.0047 0.3410 0.6600
2 0.0000 0.0606 0.2702

F0 = 0
1 0.0003 0.1227 0.4075
2 0.0000 0.0099 0.1062

F0 = +1
1 0.0000 0.0293 0.1975
2 0.0000 0.0012 0.0324

Table 7: Tranche hitting probability.

tured finance products are different from standard securities. In this article,
we provide fundamental tools for a sound risk assessment of structured fi-
nance products. We show that a scalar risk estimate is insufficient. Instead,
risk measures have to be associated with scenarios and their probability
of occurence. Given the relevance of scenarios, i.e., specific realisations of
the systematic factor, we suggest a dynamic view in terms of both PD and
LGD. Why? Structured finance products are based on a “diversified” loss
random variable and are therefore much more sensitive to systematic risk
than convential bonds. High systematic dependence implies that changes of

16



the systematic factor may have large impact. Through-the-cycle measures
as commonly used by rating agencies for bonds do not reflect this. In other
words, the economic cycle must not be disregarded with structured finance
products. That is why we plead for dynamic stress tests which are certainly
all the more relevant the more systematic risk sensitive a security is7. Above,
we presented the necessary foundations.
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Appendices

A Default Threshold Calculation

A.1 Intertemporal Unconditional Covariance

Cov (Rit, Rit′) = E[Rit, Rit′ ]− E[Rit]E[Rit′ ]

= ρσ2
t′−1∑

j=0
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(34)
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A.2 Intertemporal and Inter-Name Conditional Covariance

Cov
(
Rit, Rjt′

)
= E

[
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]− E[Rit]E
[
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]
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(35)

A.3 Intertemporal and Inter-Name Conditional Covariance,
Normalized
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