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Abstract 

The classical way of treating the correlation smile phenomenon with credit 
index tranches is to choose a sufficiently flexible model and fit it to tranche 
market prices. In this article we go a step further and try to explain the 
tranche prices without directly fitting them. To this end, we use a risk 
neutral measure of the market factor which we derive from equity index 
options. The resulting model allows separating the premium for correlation 
risk from the premium for catastrophe or down-side risk. We show that 
ignoring the high correlation risk of tranches but allowing for their down-
side risk explains the historical market prices fairly well. By contrast, the 
standard Gaussian copula model allows for the high correlation risk of 
tranches but disregards the specific down-side risk premia. 
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1 Introduction 

The motivation of this article is to provide an economic explanation of the correlation smile 
phenomenon. The correlation smile exists since the beginning of traded index tranches. It is 
comparable to the volatility smile in the world of options. The problem arises when non-
standard, non-traded tranches have to be valued. To calibrate the risk neutral density of the 
standard Gaussian copula model (Li 2000) it is common to imply the asset correlation from 
market prices of standard tranches. These calibrated correlations are not unambiguous. They 
depend on the specific tranche the market price of which one attempts to fit. Different 
tranches imply different asset correlations. 

Many approaches have been suggested which aim at resolving this problem. All of them 
directly or indirectly aim at a heavier tail of the loss distribution. For example, Burtschell et 
al. (2005) replace the Gaussian copula by other copulas such as the t-copula or the double-t 
copula. The increased tail-dependence of these copulas improves the ability of the model to fit 
all market spreads with a single correlation. Kalemanova et al. (2005) use a normal inverse 
Gaussian distribution for the market factor in order to generate heavier tails. Moosbrucker 
(2006) develops a model based on variance-gamma processes. Andersen and Sidenius (2004) 
as well as Hull et al. (2005) examine a state-contingent correlation parameter. Again heavier 
tails arise when correlations increase as the market factor becomes more adverse. Krekel 
(2008) shows that stochastic recovery rates also result in a sufficient fat tail effect to explain 
market prices. Finally, Agca et al. (2008) study the relevance of a series of assumptions of the 
Gaussian copula model for the smile phenomenon, such as the Gaussian tails of the asset 
value process or homogeneity in the pool in terms of asset correlation and recovery rates. 
They find that the employment of a Gaussian asset value distribution is the most influential 
assumption contributing to the smile. 

A major deficit of most of these approaches is their ad-hoc nature. The primary objective is 
always to find a risk neutral measure which is consistent with a set of market prices. This is 
achieved by fitting the model to all available tranche spreads. The resulting measure can be 
used to price other tranches (“bespoke” tranches). However, this fitting procedure does not 
lead to an economic explanation of the tranche spreads and therefore lacks theoretical 
foundation. There is no evidence which of the proposed model extensions are more valid and 
which are less. In addition, it is not possible to gain an impression of the value of the tranches 
relative to other risks or markets.  
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In this article we try to explain market spreads and resolve the correlation smile phenomenon 
by means of a state-contingent valuation approach. Contrary to the aforementioned ad-hoc 
procedures we do not fit the model to the market spreads of the tranches. Instead, we derive a 
risk neutral measure from equity index options. We compare different valuation alternatives 
which differ in terms of the risk components which are assumed to be price relevant. These 
are (1) the inclusion of down-side risk premia as they are well known from volatility smile or 
skew phenomena and (2) the increased systematic risk factor sensitivity of tranches in 
comparison with corporate bonds. 

The first component is a well known phenomenon which can be observed when the Black-
Scholes model (Black and Scholes, 1973) is calibrated to option prices. Similar to the 
correlation smile, market prices of options for different strike prices cannot be explained with 
a single volatility. The implied volatilities usually show a smile or skew form. A major 
explanation for this phenomenon is the existence of down-side risk premia, i.e., higher premia 
for very adverse states of the market (Rubinstein 1994)1. The implied volatilities of options on 
a market index can be used to extract a state price density which includes these down-side risk 
premia. The procedure is due to Breeden and Litzenberger (1978) and has its theoretical 
foundation in the state-contingent pricing approach of Arrow (1964) and Debreu (1959). We 
examine whether these down-side risk premia have explanatory power to resolve the 
correlation smile. 

The second price relevant risk component is systematic risk sensitivity. A basic result of 
financial economic theory is the relevance of systematic risk. For example, the Capital Asset 
Pricing Model (CAPM) (Sharpe (1964), Lintner (1965)) states that the risk premia of an asset 
increase with its correlation to the market portfolio. Since tranches are known to have much 
higher systematic risk sensitivity than corporate bonds (e.g. Moody’s 2008, Coval et al. 2009, 
Donhauser et al. 2010) we examine whether this adds to the explanation of market prices. 
Judging by the explanatory power of the different models we find that markets seem to allow 
for down-side risk but disregard the increased correlation risk of tranches.  

The rest of the article is organized as follows. In Section 2 we describe the standard Gaussian 
copula model and the correlation smile phenomenon. In Section 3 the state-contingent pricing 
approach is introduced and tested with empirical data. In Section 4 we examine a modified 
state-contingent pricing approach. Section 5 concludes. 

                                                 

1 Rubinstein (1994) uses the term “crash-o-phobia”. 
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2 Standard Gaussian Model and Correlation Smile 

The Gaussian copula model has evolved to a standard for synthetic index tranche valuation. 
To determine the value of a tranche the loss distribution of the underlying pool of credit 
default swaps has to be calculated.  

2.1 The Model 

The creditworthiness of any single name ni ,...,1=  over the period t  is modeled by means of a 
creditworthiness index comprising a common risk factor tM  as well as an idiosyncratic risk 
factor tiU , : 

tiititi UMR ,, 1 ⋅−+⋅= ρρ  

Both risk factors as well as tiR ,  are standard normal. The coefficient iρ  controls the influence 

of both factors on the creditworthiness and is a measure of correlation since for any two 
names i and j (i ≠ j), ( ) jitjti RRCorr ρρ=,, , . Obligor i defaults if his creditworthiness falls 

short of some threshold tic , . There is one threshold for any period t. The event 

titi cR ,, <  

marks a default over the period t. 

Let ( ) Ttttt K
K
kk =<<<== ...211 denote a discretization of time. The default thresholds are 

determined as follows. In a first step, given the T year credit spread is the risk neutral default 
intensity iλ  is calculated based on the “credit triangle” relation2, ( )iii RRs −= 1/λ . Then, the 
risk neutral default probability until period tk is given by ( )kiti tp

k
λ−−= exp1, . The default 

threshold is chosen to yield this PD, ( ) ( )
kkkk titititi pcpc ,

1
,,,

−Φ=⇔=Φ . 

Based on this single name model, the losses in the index pool are given by 

 ∑
=

≤⋅−⋅=
n

i
cRiit

ktiktik
RREAD

EAD
L

1
}{ ,,

)1(1 1 (1) 

where ∑=
i

iEADEAD denotes the complete pool exposure at default, iEAD  denotes the 

exposure of firm i and {}1  denotes a default indicator.  

                                                 
2 The “credit triangle” establishes a very simple relation between spread and default intensity. It is based on the 
assumption of a constant intensity and continuous compounding. 
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In the standard Gaussian model the spreads of all names in the pool are assumed to be 
homogeneous and equal to the index spread3. Thus, all obligors have identical risk neutral 
PDs. Furthermore, the factor loadings as well as the recovery rates are assumed to be constant 
and homogeneous, i.e., ρρ =i  and RRRRi = . Throughout this paper we use a standard 
recovery rate of 4.0=RR . Furthermore, all swaps have equal weight, i.e., nEADi /1= . 

The capital structure of an index CDO comprises several tranches with strict loss 
prioritization. Let 10 ≤<≤ ba  denote lower and upper attachment point of a specific tranche 
(tr). Then, the loss of this tranche is given by 

 ( ) ( )( )aLbL
ab

L tt
tr
t ,min,min1

−
−

= (2) 

The tranche suffers losses only when the losses in the collateral pool exceed the attachment 
point a. As long as the accumulated loss in the reference portfolio remains below a, the 
tranche remains without loss. When the pool loss exceeds the detachment point b, the tranche 
suffers 100% loss. 

The fair value of a tranche implies that its expected discounted loss equals its expected 
discounted spread income. Thus, the spread of a tranche is given by 

( ) ( )( )

⎟
⎠

⎞
⎜
⎝

⎛
−⋅⋅−Δ

⎟
⎠

⎞
⎜
⎝

⎛
−⋅⋅−

=

∑

∑

=

=
−

K

k
k

trQ
kfk

K

k

tr
t

Qtr
t

Q
kf

tr

tLEtrt

LELEtr
s

kk

1

1

))(1()exp(

)exp(
1

 

where Ttttt Kk == ,...,, 21 denote quarterly spread payment dates, 1−−=Δ kkk ttt  and fr  denotes 

the riskless rate. 

Instead of using the model to calculate a tranche spread based on ρ  and other parameters, it 

can be used to determine the implicit correlation which best explains the observed spread of a 
tranche. This “implied correlation” is not the same for different tranches. It is usually lower 
for mezzanine tranches and higher for senior and equity tranches. Plotting the correlations in 
the order of their seniority leads to a curve resembling a smile (see Figure 1 below). 

                                                 

3 The index spread is a default-risk weighted average of the single name spreads. 
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2.2 Empirical Results 

In this article we examine the “iTraxx Europe” CDS index and the tranches based on it. The 
index consists of 125 liquid 5-year CDS contracts on investment grade European firms. The 
index is updated semi-annually with a new series. We consider three series covering the 
period from March 2006 to September 2007. The exact start and end dates of each series are 
given in Table 1.  

iTraxx  Period 
Series 5  21.03.2006 - 20.09.2006 
Series 6  21.09.2006 - 20.03.2007 
Series 7  21.03.2007 - 20.09.2007 

Table 1 – Start and end date of each examined iTraxx series. 

There are iTraxx tranches with attachment points 0-3, 3-6, 6-9, 9-12, 12-22, and 22-100 
percent. Because of its low liquidity we omit the highest tranche (22-100 percent) in our 
further analysis. 

In Table 2 further descriptive statistics are given. Panel A and B show the means and 
volatilities of index and tranche spreads. Excluding the high volatility phase of the crisis at the 
end of series 7, average spreads and spread volatilities were falling from series 5 to series 7. 
This period was characterized by tightening spreads. Panel C and D show correlations with 
and without the high volatility phase. The crisis increases the correlations between higher 
tranches. The effect on subordinate tranches is unclear. 

 
Panel A: Means 

Index 0 − 3 3 − 6 6 − 9 9 − 12 12 − 22 
Series 5 0.003070 0.114969 0.006435 0.001828 0.000739 0.000381 
Series 6 0.002468 0.087878 0.005337 0.001489 0.000646 0.000260 
Series 7 0.003190 0.101212 0.008496 0.003125 0.001724 0.000952 
Series 7* 0.002269 0.078294 0.005104 0.001303 0.000572 0.000253 
Total 0.002911 0.101460 0.006758 0.002148 0.001036 0.000531 
Total* 0.002665 0.096624 0.005724 0.001585 0.000667 0.000307 

 

Panel B: Standard Deviations 

Index 0 − 3 3 − 6 6 − 9 9 − 12 12 − 22 
Series 5 0.000236 0.010364 0.001116 0.000294 0.000130 0.000056 
Series 6 0.000232 0.009185 0.001053 0.000304 0.000148 0.000066 
Series 7 0.001218 0.030807 0.004725 0.002623 0.001665 0.001016 
Series 7* 0.000146 0.004980 0.000690 0.000207 0.000088 0.000053 
Total 0.000792 0.022371 0.003142 0.001683 0.001081 0.000660 
Total* 0.000402 0.017789 0.001168 0.000351 0.000145 0.000085 
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Panel C: Correlations (all three series) 

  Index 0 − 3 3 − 6 6 − 9 9 − 12 12 − 22 
Index 1 
0 − 3 0.903321 1 
3 − 6 0.912238 0.749928 1 
6 − 9 0.920136 0.698677 0.961562 1 
9 − 12 0.899503 0.643117 0.925454 0.987626 1 

12 − 22 0.910653 0.660551 0.892366 0.959713 0.981836 1 
 

Panel D: Correlations (excluding the high volatility phase) 

  Index 0 − 3 3 − 6 6 − 9 9 − 12 12 − 22 
Index 1 
0 − 3 0.995151 1 
3 − 6 0.816644 0.773134 1 
6 − 9 0.859495 0.825022 0.963148 1 
9 − 12 0.683412 0.648557 0.833122 0.866553 1 

12 − 22 0.910879 0.886517 0.783909 0.814352 0.686893 1 

Table 2 – Descriptive statistics for iTraxx Europe series 5, 6, and 7. Panel A shows mean spreads for each series 
and tranche. The row “Total” refers to all three series. The row “Total*” refers to the shorter time series from 
21.03.2006 to 30.06.2007 which excludes the high volatility phase of the crisis. Panel B shows spread 
volatilities. Panel C shows correlations among the index and the tranches. Panel D shows the same correlations 
but excluding the high volatility phase of the crisis. 

Figure 1 shows the implied correlation of all tranches over the three periods. At each day the 
correlations form a smile pattern. The implied correlations of equity and senior tranches are 
higher than those of the mezzanine tranches. 

 

Figure 1 – Time series of implied correlations for iTraxx Europe series 5 to 7. 

In terms of spreads this has the following meaning. A single average correlation seems to be 
able to correctly price the 0-3 and the 6-9 percent tranche. However, the 9-12 and the 12-22 
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percent tranches require a higher correlation and the 3-6 percent tranche requires a lower 
correlation. The market spread is too high and cannot be explained with the average 
correlation. This can be seen in the following graphs (Figure 2). They show model and 
market spread time series of the index and the tranches. Model spreads are plotted for 
different levels of pool asset correlation. The high volatility phase at the end of series 7 is 
omitted so as to improve the clarity of the graphs. However, it will be treated separately 
below. 

Figure 2 – Time series of observed spreads and Gaussian copula model spreads for four different levels of asset 
correlation. The first graph shows the index spread, the other five graphs show the five considered tranches. In 
each graph the market spreads are plotted with a bold black line. The thin lines are model spreads where a 
darker colour indicates a higher ρ. The high volatility phase from July 2007 to September 2007 is omitted. 
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The equity tranche spreads best match the model spreads with %10=ρ . The 3-6 percent 
tranche is closest to the model with %5=ρ and %10=ρ , the 6-9 percent tranche is closest to 
the model with %10=ρ  and %20=ρ , the 9-12 percent tranche is closest to the model with 

%20=ρ , and finally, the 12-22 percent tranche is clearly between %20=ρ  and %30=ρ . 

This agrees with Figure 1. 

In technical terms, the origin of the correlation smile seems obvious. The tails of the Gaussian 
copula model have too little probability mass. As already summarized in the first section, 
there are many suggestions on how to resolve this problem, such as skewed or fat-tailed 
distributions for TiR , , non-Gaussian copulas with high tail dependence, a non-constant 

correlation parameter, correlated recoveries, and heterogeneous correlations or spreads. All 
these approaches have in common that the model is fitted to the observed tranche prices. 
Although this ad-hoc procedure allows resolving the correlation smile, it remains unclear 
which of these modifications are economically valid and thus lend themselves for pricing 
other tranches.  

3 State Contingent Valuation 

In order to achieve a stronger theoretical foundation and more modelling flexibility we build 
on a state contingent valuation approach similar to Coval et al. (2009). State-contingent 
valuation is a fundamental approach in financial economic theory and has its major roots in 
the works of Arrow (1964) and Debreu (1959). The basic principle is that each state of the 
economy can be associated with a price. These are called state prices. In order to determine 
the value of a security its cash-flows in each state are weighted with the corresponding state 
price. A typical proxy for the state is a market index and the state prices are derived from 
options on this index.  

To implement this approach the Gaussian copula model is too simple. Instead we use the 
structural model of Merton (1974).  

3.1 Asset and market return model 

Let tiV ,  denote the asset value of firm i at time t which follows a geometric Brownian motion 

with drift iμ  and volatility iσ , i.e. 

  tiii
ti

ti dWdt
V
dV

,
,

, ⋅+⋅= σμ   
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where tiW ,  denotes a Wiener process. It is also assumed that for the firm value at time 0=t   
00, >iV  holds. The solution of this stochastic differential equation is 

 Tii
i

i
i

Ti WTT
V
V

,

2

0,

,

2
ln ⋅⋅+⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= σσμ ,             

where ifi r λμ += , i.e., the sum of the riskless rate fr  and the asset risk premium iλ . TiW ,  is a 

standard normally distributed random variable.  

To include correlations between asset values of different firms TiW , is assumed to be driven by 

both idiosyncratic as well as systematic risk 

Ti
i

iu
T

i

M
iTi UMW ,

,
, σ

σ
σ
σβ +⋅=  

TM  denotes the standard normally distributed market factor and TiU ,  denotes the 

idiosyncratic risk factor of firm i which is also standard normal. We assume that the random 
variables TiU , and TM  are independent for any i. iβ  denotes the beta factor of firm i. Mσ  and 

iu ,σ  are the volatilities of the market factor and of the idiosyncratic factor, respectively. 

Inserting this in the previous equation gives 

 TiiuTMi
i

i
i

Ti UTMTT
V
V

,,

2

0,

,

2
ln ⋅⋅+⋅⋅⋅+⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= σσβσμ   

This model is consistent with the Gaussian model introduced above. Standardization yields 

 ( ) ( )
=

⋅+⋅

⋅⋅+⋅⋅⋅
=

⋅

⋅−−
=

T

UTMT

T

TVV
R

iuMi

TiiuTMi

i

iiiTi
Ti

2
,

22

,,
2

0,,
,

2//ln

σσβ

σσβ

σ

σμ  

 TiiTi UM ,⋅−+⋅= ρρ 1   

where 
2
,

22

22

iuMi

Mi
i

σσβ
σβρ
+⋅

⋅
= . 

Default of firm i  occurs when the asset value falls short of the debt level iK at maturity T. 

Thus, the (real-world) probability of default (PD) is given by 

 

( )
( )
( )P

Ti

P
TiTi

iiTiTi

c

cRP

VKVPp

,

,,

0,,,

Φ=

≤=

≤=

  

where P
Tic ,  is a default threshold which is given by 
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T

T)/(ln
c

i

iiV
K

P
T,i

,i

i

σ

σμ ⋅−−
=

22
0  

Assuming that the market value follows a geometric Brownian motion with drift Mμ and 
volatility Mσ the (log-) market return until time T is given by 

TM
M

M
M

TM MTT
V
V

⋅⋅+⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= σσμ

2
ln

2

0,

,  

where MMfM r δλμ −+= , Mλ  is the equity market risk premium and Mδ denotes the market 

dividend yield. The market return, or equivalently its innovation TM , represents the state 

space in our model.  

3.2 State Price Density and Valuation 

The present value of a tranche tr
0π  is determined by weighting state conditional tranche cash 

flows with state prices 

 ∫ ⋅= TTT
tr

T
tr dMMqMCFE )()|(0π (3) 

)( TMq  denotes the state price density4. )|( T
tr

T MCFE  denotes the conditional expected tranche 

cash flow. It is based on the real-world (physical) loss measure and is directly related to the 
conditional expected tranche loss 

                                                          )|(1)|( T
tr
TT

tr
T MLEMCFE −=  

The state price density is determined based on option prices of an equity index that represents 

the state of the credit market. The exact procedure is due to Breeden and Litzenberger (1978). 

They show that state prices )(Kq  can be determined as the second derivative of the European 

call price with respect to the strike price  

  (4) 

Here, K  denotes the strike price, ( )Kσ  denotes the implied volatility, and ( )( )KTKC σ,,  

denotes the Black-Scholes price of a European call option. The implied volatility is that 

                                                 

4 The state price density is the discounted risk neutral density. 

( )( )
2

2 ,,)(
dK

KTKCdKq σ
=
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volatility for which the Black-Scholes option price is equal to the market option price. The 

formulas for )(Kq  and )( TMq  can be found in Appendix 1. 

Given a set of parameters including the asset volatility the Black-Scholes model yields option 

prices for any strike price. Conversely, if the market relies on a Black-Scholes valuation, the 

observed option-prices can be explained with the same volatility. Empirically, however, this 

does not hold true. When volatilities are implied from option prices for different strike prices 

a well known phenomenon called “volatility smile” or “volatility skew” can be observed. This 

denotes the fact that out-of-the-money and in-the-money options require higher Black Scholes 

volatilities to reach the market prices than at-the-money options. These differences in implied 

volatilities for different strike prices are partly explained by higher risk premia for adverse 

states of the market. 

The second derivative in the Breeden-Litzenberger formula requires that ( )Kσ  be a twice 

differentiable function of the strike price. A common choice for such a fitting function is 

“tangens hyperbolicus”. We use the following parametric form to explain ( )Kσ : 

( ) ( )( )0,210 /lntanhˆ MVKK βββσ −+=  

We calibrate the parameters ,, 10 ββ  and 2β  by minimizing the sum of squared differences 

between observed option prices and model prices over all available K , i.e., 

 

 

where j  is the strike price index (running from unity to J) and ( )( )jj KTKC σ̂,,ˆ  denotes the 

Black Scholes option price for strike price jK , maturity T , and volatility ( )jKσ̂ . Figure 3 

shows the volatility smile and the fitted tangens hyperbolicus function on a specific day. 

 

Figure 3 – Implied volatilities (dotted) and fitted tangens hyperbolicus function. 

( ) ( )( )[ ]∑
=

−
J

j
jjj KTKCTKC

1

2

,, ˆ,,ˆ,minarg
210

σβββ
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Finally, )(Kq  in (4) and )( TMq  in (3)  are related via the above market index return equation 

T
M

MMV
K

M
T

T
M =

⋅−−

σ

σμ )2/(ln 2
0,  

Beside )( TMq  in (3) we need the conditional tranche cash flows, )|( T
tr

T MCFE  or the 

conditional tranche expected losses, )|( T
tr
T MLE , to determine the value of a tranche. Tranche 

losses (2) are based on pool losses (1). The pool is assumed to be homogeneous and has three 
parameters: the recovery rate RR, the asset correlation ρ  and the default threshold Tc .  The 

recovery rate and the pool asset correlation are typically fixed externally. The default 
threshold in the pool, Tc , is calibrated so that the model price for the pool equals the observed 

index price. The pool price is simply the expectation of the pool cash flows with respect to the 
state price density 

( )∫ ⋅−= TTTT dMMqMLE )()|(10π  

where 

 

 = ( )RR
Mc TT −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

⋅−
Φ 1

1 ρ
ρ

 

Thus, the default threshold is used to include credit market information in our model. 
However, contrary to the Gaussian copula valuation no tranche prices or tranche spreads are 
used to calibrate the model. 

Finally, based on the present value of the tranche, ,0
trπ the tranche spread is given by 

( ) f
trtr r

T
s −−= 0ln1 π  

3.3 Comparison with Standard Gaussian Copula Valuation 

It is helpful at this point to compare the state-contingent valuation approach with the standard 
approach as described in Section 2. The market factor TM in the latter is standard Gaussian. In 

the state contingent valuation approach the market factor is Gaussian if a constant volatility is 
assumed. In this case both approaches only differ in terms of their cash flow structure. The 
Gaussian copula model includes quarterly payments while the state price approach is static. 
Practically, this difference is less relevant. It is easy to see that when the Gaussian copula 

( )( )RREMLE
TT cRTT −= ≤ 1)|( }{1
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model refers to one period only and both models are calibrated to the same index spread, then 
they are equivalent. With the Gaussian copula model the full risk neutral shift is in the 
obligors’ PD. In the state contingent pricing model part of the shift is in the PD and the other 
part is in the implied factor density. 

This can be shown as follows. The pool price based on a state-contingent valuation approach 
is given by 

( )∫ ⋅⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

⋅−
Φ−= TT

TT dMMqRR
Mc

)(1
1

10 ρ

ρ
π  

With the assumption of a constant volatility we have MTK σσ =),( . After transformation from 
K to TM  this yields 

( ) )exp(/)()( TrTrMMq fMMfTT ⋅−⋅−−= σμϕ  

where )( TMϕ denotes the standard Gaussian density. Hence, )( TMq is the density of a 

normal distribution with mean MMf Tr σμ /)( −  and standard deviation one. 

By a change of variables MMfTT TrMM σμ /)(~
−−= we obtain 

( ) ( )

( )∫

∫

⋅−⋅⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
⋅−

Φ−=

⋅−⋅⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−+⋅−
Φ−

=

TfT
TT

TfT

MMfTT

MdTrMRRMc

MdTrM

RR
TrMc

~)exp()~(1
1

~
1     

~)exp()~(

1
1

/)(~
1

*

0

ϕ
ρ

ρ

ϕ

ρ
σμρ

π

 

where MMfTT Trcc σμρ /)(* −−= and TM~ is a standard normal random variable. The last 

row is equivalent to the price based on the static Gaussian copula model. 

If, on the other hand, the volatility skew is allowed for, the resulting density is non-standard 
and has typically a hump at the lower end. As a consequence, the factor density has a fat left 
tail. Figure 4 shows an example. The bold curve is the risk neutral density resulting from the 
Breeden-Litzenberger procedure in which the volatility smile is allowed for. The curve has a 
pronounced hump at the lower end where the adverse market states are situated. 
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Figure 4 – Risk neutral density without and with allowing for the volatility skew. 

By contrast, when the volatility skew is disregarded and the at-the-money volatility is 
assumed for all strike prices a Gaussian risk neutral density of the market factor is the result. 
This density has clearly less probability mass in the left tail. Thus, an asset the losses of which 
are concentrated in the left, adverse states, has a much lower value when the bold density is 
applied. 

3.4 Empirical Results 

We apply this pricing model now to the iTraxx Europe series 5, 6, and 7. In addition to CDS 
spreads and index spreads we use further data. The “Dow Jones Euro Stoxx 50”, which 
comprises the 50 largest companies in the euro zone, acts as our market index for iTraxx 
Europe. There is a large overlap between iTraxx Europe and Euro Stoxx 505. We estimate the 
annual (logarithmic) return of the price index on the history of the index since 1992.  

To determine the state price density based on the Breeden-Litzenberger approach prices of 
five-year options (call and put) on this index are used6. We use 28 option prices for 
moneyness levels between 0.5 and 1.37. The five-year euro area yield curve of AAA-rated 
government bonds is used for the daily riskless interest rate. The dividend yield is derived 
from daily quotes of five-year options on the Euro Stoxx index. The historical market return is 
0.1270. 

                                                 
5 For example, 44 of the 50 Euro Stoxx firms are in at least one of the three iTraxx series. Furthermore, 33 of the 
50 Euro Stoxx firms are in all three series.   

6 We thank Bayerische Landesbank for the data access within our research cooperation. 

7 Moneyness is defined as 0,/ MVK . 
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Figure 5 shows model and market spread time series of the index and the tranches. Model 
spreads are plotted for different levels of pool asset correlation.  

 

Figure 5 – Time series of observed spreads and state-contingent valuation model spreads for four different 
levels of asset correlation. The first graph shows the index spread, the other five graphs show the five considered 
tranches. In each graph the market spreads are plotted with a bold black line. The thin lines are model spreads 
where a darker colour indicates a higher ρ. The high volatility phase from July 2007 to September 2007 is 
omitted. 
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The equity tranche spreads are systematically underestimated for any asset correlation. The 
spreads of all other tranches are systematically overestimated for the 10, 20, and 30 percent 
asset correlation. This is clearly a result of the fat left tail of the state price density which 
implies significant discounts for all tranches with losses concentrated in the adverse states of 
the market factor.  

4 Tranche Correlation Adjustment 

The state contingent pricing model of the last section includes two major components, the 
state price density and the expected conditional tranche loss.  The result of the last two 
sections is that not allowing for the volatility skew and just pricing the correlation risk implies 
an underestimation of senior tranche spreads. By contrast, allowing for the skew implies a 
strong overestimation of all non-equity spreads.  

With respect to the other pricing component there is a seeming contradiction. A series of 
studies (e.g. BIS 2005, BIS 2009) argue that investors make little difference between equally 
rated corporate bonds and structured securities. That is, they focus on rating information and 
do not allow for differences in the risk profiles. However, it is well documented that there are 
significant differences between corporate bonds and structured securities. The question arises 
whether this is price relevant.  

4.1 Risk Adjustment 

For illustration of the risk differences consider the following conditional expected loss 
profiles (Figure 6).  

 

(a) Tranche (b) Bond 
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Figure 6 – Conditional expected loss profiles of the tranches as of 16.05.2006. The left graph (a) shows the 
tranche profiles. The right graph (b) shows the profiles of corporate bonds with equal expected loss as the 

corresponding tranches in (a) but with bond typical low correlation ρ = 0.20. Curves with the same greyscale in 
(a) and (b) have equal expected loss. 

 

The left panel shows the conditional expected loss of each iTraxx Europe tranche at a specific 
day (16.05.2006). The unconditional expected losses of these tranches at this date are given in 
Table 3. 

Tranche  Expected Loss 
E(Ltr) 

 Implicit Asset 
Correlation ρ 

0 − 3  0.16453  0.59893 
3 − 6  0.01304  0.85773 
6 − 9  0.00227  0.90310 
9 − 12  0.00051  0.92223 
12 – 22  5.4191e-05  0.87496 
Index  0.00541  0.20000 

Table 3 – Expected loss and implicit asset correlation of iTraxx Europe tranches as of 16.05.2006. 

The right panel in Figure 6 shows the conditional expected loss of bonds with the same 
unconditional expected loss as the tranches. The conditional expected loss of a bond is given 
by 

 ( )RR
Mc

MLE TT
TT −⎟

⎟
⎠

⎞
⎜
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⎛

−

⋅−
Φ= 1

1
)|(

ρ
ρ

(5) 

For Figure 6 the default threshold Tc in (5) is calibrated so that each tranche in the left panel 

and its corresponding bond curve in the right panel have the same expected loss, i.e., 
( ) ( )tr

TT LEMLEE =)|( . The asset correlation is fixed at 2.0=ρ which is equal to the asset 

correlation that is assumed for the CDS in the index pool. Finally, the recovery rate is fixed at 
the typical value of 0.4.  

Although the graphs are similar, there are two major differences between tranches and bonds. 
First, the bonds have lower maximum loss. Second, the tranche curves are much steeper than 
the bond curves. In other words, they are more sensitive to changes of the systematic risk 
factor M. In the Gaussian single risk factor model for bonds the parameter driving factor 
sensitivity is ρ . A corporate bond has typically asset correlations ρBond in the range of 0.15 to 
0.30. The higher ρ , the steeper the conditional expected loss curve. Previous research has 

shown how to compare the sensitivity of corporate bonds with those of tranches (e.g. 
Moody’s KMV (2008); Donhauser et al. (2010)). The basic idea is to calibrate the Gaussian 
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single risk factor model (Formula (5)) so that it optimally fits the tranche expected loss curve. 
Hence, the calibrated rho is typically much higher than that of a corporate bond. The range of 
typical values depends on the seniority. While junior and senior tranches have correlations ρtr 
in the range of 0.5 to 0.7, those of mezzanine tranches are as high as 0.8 or 0.9. The implicit 
asset correlations of the iTraxx Europe tranches at 16.05.2006 are given in the last column of 
Table 3. They are clearly higher than those of the index. 

The models studied so far are implicitly based on the high correlation of tranches. We 
implement the idea of a tranche with corporate bond asset correlation as follows. As shown 
above, the conditional expected loss of a tranche differs from that of a corporate bond in 
terms of the asset correlation ρ . Hence, we replace )|( T

tr
T MLE by the conditional expected 

loss of a bond 

( )RR
Mc

MLE TT
T
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T −⎟

⎟
⎠
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⎜
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⎛

−

⋅−
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1
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ρ

ρ
 

The first term on the right hand side is the conditional PD of the Gaussian single risk factor 
model as outlined in Section 2. The second term is the loss given default. For ρ the asset 
correlation of the bonds in the underlying pool is used. For example, with respect to Table 3, 
ρ = 0.20 is used for the equity tranche instead of ρ = 0.5989. To make the prices of these 
correlation adjusted bonds comparable to the original tranches, cT has to be chosen so that 

( ) ( ))|()|( T
tr
TT

adj
T MLEEMLEE =  

i.e., the (unconditional) expected loss of the tranche is maintained. Altogether, each tranche is 
expressed as a corporate bond with its typical lower correlation but with equal expected loss 
as the tranche. 

4.2 Empirical Results 

We apply the model using an adjusted tranche correlation of ρ . All other parameters are 

equal to those of the previous model. Figure 7 shows the resulting model prices for different 
levels of pool asset correlation. 
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Figure 7 – Time series of observed spreads and correlation adjusted state-contingent valuation model spreads 
for four different levels of asset correlation. The first graph shows the index spread, the other five graphs show 
the five considered tranches. In each graph the market spreads are plotted with a bold black line. The thin lines 
are model spreads where a darker colour indicates a higher ρ. The high volatility phase from July 2007 to 
September 2007 is omitted. 

For each tranche the market curve lies between the model curves with 2.0=ρ  and 3.0=ρ . 

Conversely, this means that the implied correlations based on this model always lie between 
0.2 and 0.3. This model has clearly more explanatory power than the other two models which 
did not show a clear tendency. The Gaussian copula model underestimates equity and senior 
tranche spreads and overestimates mezzanine tranche spreads. The state-contingent pricing 
model always significantly underestimates equity spreads and overestimates the spreads of all 
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other tranches. This is a result of the fat left tail of the risk neutral factor density as well as the 
high correlation of the tranches. 

Subsequently, we measure the relative pricing error of the Gaussian Copula model, the state-
contingent pricing model as well as the correlation adjusted model. For each day, each model, 
and each correlation in the range from 0.01 to 0.30 we calculate the mean absolute percentage 
error (MAPE)  

∑
−

=
tr

tr
t

tr
t

tr
t

t s

ss
MAPE

ˆ

ˆ

5
1

 

where tr
ts denotes the model spread and tr

tŝ denotes the observed spread on day t of tranche tr. 

Then, we determine the pool asset correlation which yields the lowest MAPE for each model 
on each day. This quantitative measure allows us to compare the models. Furthermore, we are 
able to judge the robustness of the models regarding exogenously given asset pool 
correlations. The results are shown in Figure 8. 

 
(a) 

 
(b) 

Figure 8 – Panel (a): Time series of minimum MAPE for the Gaussian copula model, the state-contingent 
pricing model and the correlation adjusted state contingent pricing model. The graphs cover the series 5 to 7.   
Panel (b): Pool asset correlation associated with the minimum MAPE from Panel (a). The minimum asset 
correlation is chosen from a discrete set of values from 0.01 to 0.30 in 0.01 steps.  

The left graph shows the minimum MAPE over all admissible asset correlations on each day 
for each model over the three iTraxx Europe series. The right graph shows the corresponding 
asset correlations which minimize MAPE on each day for each model. The major finding is 
that the correlation adjusted model strongly dominates the other models in terms of relative 
percentage error. This applies for both the pre-crisis period as well as for the crisis period 
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from June 2007 to September 2007. In the crisis all models are associated with higher errors. 
The right graph shows that the Gaussian copula model requires the largest range of asset 
correlations (from 0.12 to 0.27) to explain the market prices. This may be partly explained 
with the fact that the other two models obtain further market information from equity index 
options. The state contingent pricing model has optimal correlations in the range of 0.04 to 
0.10. The correlation adjusted state contingent pricing model has optimal correlations in the 
range of 0.20 to 0.28. There is a wide range of estimated asset correlations in empirical 
studies. Asset correlations derived from default data are usually below 0.10 while asset 
correlations implied from equity price correlations are usually significantly higher between 
0.10 and 0.30 (see Moody’s 2008). Hence, we estimated asset correlations from the spreads of 
the iTraxx Europe members8. Table 4 shows the average estimated asset correlation for each 
series. They are in fairly good agreement with the range of optimal correlations of the 
correlation adjusted model (0.20 to 0.30) but not with range of low correlations of the state 
contingent pricing model (0.02 to 0.10). This clearly supports the validity of the correlation 
adjusted model. With respect to the increased estimated correlations in the crisis period note 
that in Figure 8b the curve of the correlation adjusted model reaches the upper bound. 

 

iTraxx  Period Mean Empirical Asset  
Correlation 

 Series 5  21.03.2006 - 20.09.2006 0.278 
 Series 6  21.09.2006 - 20.03.2007 0.261 
 Series 7*  21.03.2007 - 30.06.2007 0.329 
 Series 7  21.03.2007 - 20.09.2007 0.555 

Table 4 – Empirical asset correlations for iTraxx Europe series 5 to 7. The row Series 7*  
is shorter and does not include the high volatility phase of the crisis. Mean empirical asset correlations are 

averages over all estimated pairwise correlations of the 125 names in the index. 

This indicates that even correlations higher than 0.30 would be optimal which is again in 
agreement with the estimated mean correlation of 0.555. 

                                                 

8 See Tarashev and Zhou 2009 for a description of the exact procedure. 
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5 Conclusion 

In this article we provide an economic explanation for the correlation smile phenomenon. We 
have shown that market prices of index tranches can be explained very well under the 
assumption that down-side risk premia are relevant but the increased systematic risk 
sensitivity of tranched securities is irrelevant.  The relevance and robustness of our results is 
enhanced by the fact that we do not need to fit the model to tranche prices. The only 
calibration occurs with respect to the index spread level. The robustness is further supported 
by the fact that we do not rely on a single exogenous pool correlation estimate but rather 
examine a whole range of possible levels. 

Our analysis also offers more insight into the risk components of structured debt and the 
valuation determinants. The comparison of the standard Gaussian copula valuation method 
and with the state contingent valuation method reveals explicitly that the former implicitly 
uses the true (high) tranche correlation but disregards extra down-side risk premia. This is due 
to the assumption of a Gaussian distribution for the market factor without a fat left tail. We 
have also shown that allowing for both down-side risk premia as well as the true tranche 
correlation results in a strong overestimation of the market prices unless extremely low asset 
correlations are assumed for the index.  

 



 

 

24 

 

Appendices 

Appendix 1 

The risk neutral density with respect to K is given by 
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The state price density is 
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